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Abstract—An efficient stereoselective syntheses of (2S,3S)-3-hydroxypipecolic acid and (2R,3S)-2-hydroxymethylpiperidin-3-ol were
achieved from p-anisaldehyde via the regioselective and diastereoselective introduction of an N-protected amine group using chloro-
sulfonyl isocyanate, ring-closing methathesis, and oxidation of p-methoxyphenyl group as the key steps.
� 2006 Elsevier Ltd. All rights reserved.
Chiral hydroxylated piperidines are important core
structures that are found in many bioactive natural
and non-natural compounds. These compounds have
received considerable attention on account of their
many pharmacological properties.1 Therefore, many no-
vel asymmetric synthetic methods have been developed
for their synthesis.2 (2S,3S)-3-Hydroxypipecolic acid
(1)3 and (2R,3S)-2-hydroxymethylpiperidin-3-ol (2)4

are nitrogen-containing six-membered cyclic compounds
that have been used as important synthetic building
blocks for the preparation of many naturally occurring
alkaloids such as (+)-febrifugine (3),5 a potent antima-
larial agent, and (+)-prosophylline (4),6 which exhibit
analgesic, anesthetic, and antibiotic activities (Fig. 1).

As a part of our research program aimed at developing
enantioselective syntheses of polyhydroxylated alka-
loids, we became interested in developing an efficient
route for synthesizing polyhydroxylated piperidine alka-
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Figure 1. Structure of polyhydroxylated piperidines.
loids such as (2S,3S)-3-hydroxypipecolic acid (1) and
(2R,3S)-2-hydroxymethylpiperidin-3-ol (2).

This letter reports the novel enantioselective syntheses of
1 and 2 using Brown’s asymmetric aldol reaction as a
source of chirality and the regioselective and diastereo-
selective amination using chlorosulfonyl isocyanate
(CSI).7

Scheme 1 outlines the retrosynthetic analyses of com-
pounds 1 and 2. The common intermediate 5 would be
derived from the protected 1,2-amino alcohol 6a by N-
allylation and ring-closing methathesis. Compound 6a
would be prepared via the regioselective and diastereo-
selective installation of NHCbz group into anti-1,2-di-
benzyl ether 7 using CSI reaction.

In the initial studies, the regioselectivity and diastereo-
selectivity of the reaction of anti-1,2-dibenzyl ether 7
Diastereoselectivity.
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Scheme 1. Retrosynthetic analyses of 1 and 2.
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with CSI were investigated. As expected, the regioselec-
tivity was completely controlled by the stability of the
carbocation intermediate, and the diastereoselectivity
Table 2. CSI reactions of the syn-1,2-dibenzyl ether 8 in various solvents an

i) CSI, Na2CO3

ii) 25% Na2SO3
H3CO

OBn

OBn
H3CO

8

Entry Solvent T (�C) T

1 CH2Cl2 0
2 CHCl3 0
3 Et2O 0
4 Toluene 0
5 �78 2
6 CCl4 0 1
7 Hexane 0
8 �78 1

a All reactions were carried out at 0 �C with CSI (3.0 equiv) and Na2CO3 (4
b Isolated yield of pure materials.
c Isomer ratio determined by 1H NMR spectroscopy.

Table 1. CSI reactions of the anti-1,2-dibenzyl ether 7 in various solvents an

i) CSI, Na2CO3

ii) 25% Na2SO3
H3CO

OBn

OBn
H3CO

7

Entry Solvent T (�C) T

1 CH2Cl2 0
2 CHCl3 0
3 Et2O 0
4 Hexane 0
5 �78 1
6 Toluene 0
7 �40 1
8 �78 2

a All reactions were carried out at 0 �C with CSI (3.0 equiv) and Na2CO3 (4
b Isolated yield of pure materials.
c Isomer ratio determined by 1H NMR spectroscopy.
differed widely according to the effects of the solvent
and temperature, as summarized in Table 1.

As shown in entries 1 and 4, the reaction in methylene
chloride at 0 �C gave the corresponding diastereoiso-
mers (6a and 6b) as an anti/syn mixture of 8:1 in 87%
yield, and the reaction in hexane at 0 �C furnished an
anti/syn mixture of 13:1 in favor of the desired anti-iso-
mer 6a. In particular, the reaction in toluene at �78 �C
(entry 8) produced a significantly higher diastereoselec-
tivity of 49:1 in 90% yield. Table 1 shows the successful
attempts to optimize the diastereoselectivity by varying
the solvent and temperature. Consequently, anti-diaste-
reoselectivity increased with decreasing polarity of the
solvent or by decreasing the reaction temperature.

The reactions of syn-1,2-dibenzyl ether 8 with CSI were
examined in various solvents and at different tempera-
tures. Table 2 gives a summary of the results. In the case
of 8, syn-1,2-amino alcohol 6b was obtained as the
d at different temperaturesa

NHCbz

OBn
H3CO

NHCbz

OBn
+

6a 6b

ime (h) Yieldb (%) Ratioc (6a:6b)

1 93 1:1.3
3 94 1:1.6
6 93 1:1.7
9 85 1:1.9
4 90 1:4.6
1 80 1:2.2
2.5 79 1:6.3
8 80 1:12

.5 equiv).

d at different temperaturesa

NHCbz

OBn
H3CO

NHCbz

OBn
+

6a 6b

ime (h) Yieldb (%) Ratioc (6a:6b)

1 87 8:1
3 94 10:1
6 81 11:1
8 80 13:1
2 82 25:1
8 80 25:1
6 90 38:1
4 90 49:1

.5 equiv).
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major product, which had the same syn-stereochemistry
as the starting material.

Although the diastereoselective ratio of the syn-1,2-di-
benzyl ether was reduced when compared with the
anti-stereoisomer, the reaction in hexane at �78 �C (en-
try 8) afforded the syn-isomer as the major product with
a high diastereoselectivity of 1:12 in 80% yield.

Tables 1 and 2 show that the diastereoselectivity of these
reactions can be explained by the neighboring group ef-
fect7c,8 and a partial SN1 mechanism, where the NHCbz
group orientation retains its original configuration in
benzyl ether via a double inversion of the configuration,
as shown in Figure 2. The reduced diastereoselectivity of
compound 8 may have been caused by the increased ste-
ric repulsion between the two bulky substituents, which
were placed in the cis-form (transition state B). As the
polarity of the solvent decreased, there was a larger in-
crease in the rate of vicinal OBn attack (the neighboring
group effect) than nucleophile attack, which increased
the diastereoselectivity. Therefore, these reactions are
more efficient in non-polar solvents.

Based on the above results, the total syntheses of
(2S,3S)-3-hydroxypipecolic acid (1) and (2R,3S)-2-
hydroxymethylpiperidin-3-ol (2) were achieved using
p-anisaldehyde as the starting material (Scheme 2).
p-Anisaldehyde was converted into the diol 9 with high
enantioselectivity (95% ee via the Mosher ester) and dia-
stereoselectivity (>99% ds) according to the known pro-
cedure.7c Benzylation of the diol 9 with benzyl bromide
and sodium hydride in DMF and THF gave the fully
protected anti-1,2-dibenzyl ether 7 in 99% yield. The
regioselective and diastereoselective CSI reaction of 7
was carried out on anhydrous toluene at �78 �C for
24 h, which was followed by desulfonylation with an
aqueous solution of 25% sodium sulfite to afford the
Cbz-protected amine 6a with a high diastereoselectivity
(anti/syn = 49:1, 98% ds) in 90% yield.
The allylation of NHCbz with allyl bromide afforded
compound 10, in a quantitative yield, which was readily
cyclized by using first-generation Grubbs catalyst to give
the unsaturated piperidine 11 in 91% yield. Hydrogena-
tion of the olefin 11 with platinum oxide,5i followed by
oxidation with RuCl3 (0.15 equiv) and NaIO4 (17 equiv)
in H2O/CH3CN/EtOAc (2:1:1)9 gave the intermediate
carboxylic acid, in which the benzyl group had been oxi-
dized to the benzoate.10 The removal of the benzoyl and
benzyloxycarbonyl group with 6 N hydrochloric acid
furnished trans-pipecolic acid 1 as a crystalline form,
mp 229–235 �C (MeOH) [lit.3b 232–236 �C]; ½a�25

D +13.0
(c 0.5, 10% aq HCl) [lit.3b ½a�25

D +13.5 (c 0.5, 10% aq
HCl)]. The spectral properties (1H and 13C NMR) of
synthetic compound 1 were in full agreement with the
reported literature values.11

The total synthesis of (2R,3S)-2-hydroxymethylpiper-
idin-3-ol (2) was achieved from the piperdine 5 via a
three-step synthesis, as illustrated in Scheme 3. Oxida-
tion of p-methoxyphenyl group of 5 under the above-
mentioned reaction condition9 gave the intermediate
carboxylic acid, which was reacted with borane–tetra-
hydrofuran complex without purification to give the
desired alcohol 12 in 64% overall yield. Acid hydrolysis
of 12 gave 2,3-trans-piperidine 2, with the specific rota-
tion and spectral data (1H and 13C NMR), identical to
those reported in the literature.12

In conclusion, we reported an efficient stereoselective
syntheses of (2S,3S)-3-hydroxypipecolic acid and
(2R,3S)-2-hydroxymethylpiperidin-3-ol via the regio-
selective and diastereoselective introduction of an N-
protected amine group using the reaction of anti-1,2-
dibenzyl ether with CSI, ring-closing methathesis, and
oxidation of p-methoxyphenyl group. We believe that
our synthetic strategy can be applied to the preparation
of various polyhydroxylated piperidine alkaloids or
other natural products containing a nitrogen atom in
the ring.
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